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ABSTRACT 
 
 
 
The thesis presents the design, development, and implementation of a multi-agent 

simulation that models coverage and deployment of mobile and non-mobile sensors 

performing collaborative target-detection missions.  The focus is on sensor networks with 

enough sensors that humans cannot individually manage each sensor.  Experiments 

investigate novel search, coverage, and deployment algorithms, and compare them to 

known methods.  The experiments show algorithms productive for area coverage are not 

useful for detecting unauthorized traversals and vice versa.  Obstacles, sensor 

mechanisms, mission parameters, and deployment schemes are analyzed for their effect 

on coverage quality.  This work facilitates further research in sensor coverage and 

deployment strategies using sensor agents. 
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I. INTRODUCTION  

A. PROBLEM SPACE  
We are on the brink of a revolution in robotics and other micro-electro-

mechanical systems (MEMS) that has the potential to change much including warfare.  

Recent advances in wireless communications and digital electronics have enabled 

development of low-cost low-power multifunctional sensor nodes that are small in size 

and communicate over untethered short distances [AKY02].  Likewise, recent advances 

in robotics and distributed computing enable teams of robots numbering in the hundreds 

to collaboratively perform complex problem solving behavior [HOW02a] [SIN01].  Soon 

the numbers will be in the thousands, far beyond what is individually manageable by 

human users.  As sensor and robotic technologies continue to advance, modeling and 

simulation of deployment is becoming increasingly important to conduct low-cost 

experiments with different configurations, settings, and applications of the technology. 

Today, transmitting a bit of data over 10-100 meters by radio frequencies (RF) 

takes approximately 100 nano-Joules (nJ) of power.  Transmitting a kilometer takes 10 to 

100 micro-Joules (mJ).  Soon, optical communication systems will transmit 10 meters 

with an energy cost of 10 pico-Joules (pJ) per bit, more than 10,000 times lower than 

existing radio technology.  Computationally, it currently takes around 1nJ per instruction 

on power-optimized microprocessors, whereas it will soon take around 1pJ per 

instruction.  Batteries provide around 1 joule per cubic millimeter.  Solar cells provide 

approximately 100 microwatt per cubic millimeter (mm3) in full sunlight.  The energy 

cost will be a few nano-Joules for sampling a sensor, performing some relatively simple 

processing, listening for incoming messages, and transmitting a simple outgoing 

message.  Putting all this together, a one cubic millimeter battery will provide enough 

power to sense and communicate once a second for 10 years, and enough energy to 

transmit 50 billion bits of information [PIS03].   

The military is investing heavily in this technology, and it is easy to envision how 

small sensing devices will aid future warriors.  In the future age of network centric 

warfare, thousands to millions of sensors will pervade the battle space.  From chemical 

agent detection to target acquisition and biological monitoring, disparate sensors will 
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work collaboratively to provide situational awareness and early warnings of imminent 

danger.  Projects such as the Smart Sensor Web (SSW) project funded by the Defense 

Modeling and Simulation Office are aggressively exploring current bounds of this 

technology, as well as future uses [DMS03].  

Current battlefields are far behind this vision of pervasive sensor networks.  

Ground sensors are usually emplaced by humans who are exposed to danger in the 

process.  These ground sensors weigh tens to hundreds of pounds, and have limited 

sensing lives, limited communications distance, and limited maneuverability.  

Nevertheless new technology is arriving.  For example, one of the premier sensor 

vehicles produced today is quite impressive.  Called “Packbot” because it is designed to 

fit in a pack, Tactical Mobile Robot (TMR) prototype weighs 40 pounds and costs over 

$45,000.  It can right itself and is waterproof to 3 meters depth.  It can climb stairs and 

survive a 3-meter drop onto concrete.  It can reasonably be assumed that in 5-10 years 

vehicles like Packbot will weigh less than ten pounds, run ten times longer, and cost less 

than $1,000.  Still this is a big step from such prototypes to extensive employment, 

including integration with soldiers wearing tiny computers interfaced to battlefield 

sensors and rear echelon commands. 

As sensors and robots continue to get smaller, faster, and more power efficient, it 

is important to advance the software and algorithms that will take advantage of them.  

Modeling and Simulation (M&S) is the most cost-effective way to do so, provided we 

ensure an accurate mapping to and from the real world.  One aspect of sensor networks 

that is difficult to scientifically advance without modeling and simulation is how to 

deploy sensors efficiently for optimal coverage.  It is not feasible to test every 

conceivable sensor configuration in billions of physical experiments to empirically learn 

which sensors should be purchased and how they should be employed: There are too 

many factors to consider.  This thesis addresses this problem at the application level for 

sensor networks. 

   

B. OBJECTIVE 
This thesis explores coverage and deployment issues for mobile and non-mobile 

sensors.  A multi-agent simulation (MAS) for an expeditionary sensor networks is 
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designed and implemented.  Novel search, coverage, and deployment algorithms are 

implemented, tested, and compared to known methods in order to provide insight to 

future acquisition decision makers.  The goal is to formulate principles for good sensor 

placement under a wide range of constraints. 

   

C. THESIS ORGANIZATION 
This thesis consists of six chapters and two appendices.  Chapter II discusses 

important concepts related to sensor networks and autonomous vehicles.  Chapter III 

describes previous work related to this thesis.  Chapter IV explains the sensor simulation 

built.  Chapter V reports the results of the simulation.  Chapter VI discusses future work 

and formulates conclusions.  Appendix A provides instructions for obtaining the 

application and source code. 
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II. APPLICATION AREA 

Consider an infantry company consolidating after a protracted battle against a 

determined enemy.  Suppose they are a part of the main force ordered to establish a 

defensive position on a recently assaulted objective and prepare to defend it against a 

counterattack.  The company commander surveys the terrain, possibly urban, and orders 

his platoons to their defensive positions.  If this were being conducted today, he would 

also set up observation posts and launch external patrols to help provide early warning 

against enemy infiltrations and attacks.  A future commander might use a wearable 

computer to request thousands of dust-size non-mobile sensors be deployed to cover the 

area forward of his position.  The platoon commanders could also release small man-

portable autonomous vehicles to deploy more sensors to cover any gaps in coverage.  

Once the sensors have been deployed, this company might then use wearable computers 

to monitor the sensor net and visualize targets that may be detected.  The wearable 

computers themselves become part of the sensor network; transparent to this company, 

the sensor network will also be sending information higher up the command hierarchy.  

The sensors could physically deploy, set up ad hoc network communications, manage 

data, respond to failures, manage power consumption, and much more.   

Many such examples exist.  Today, the US could use sensor fields to help identify 

insurgents crossing the Syrian border into Iraq.  Battlefield surveillance is just one of 

many scenarios imaginable for sensor networks.  Sensors will also be used for monitoring 

friendly forces, equipment, and ammunition; reconnaissance of opposing forces and 

terrain; targeting; battle-damage assessment; and nuclear, biological, and chemical 

(NBC) attack detection and reconnaissance [AKY02].  With thousands of sensors 

deployed across the battlefield, human manual positioning and controlling of the sensors 

can be surpassed.  The sensors, and the sensor networks they comprise, will need to be 

autonomous in every way. 

 

A. SENSOR NETWORKS 

A sensor is a device that implements the physical sensing of environmental 

phenomena.  Sensors typically consist of five components: sensing hardware, memory, 

5 



battery, embedded processor, and receiver/transmitter [TIL02].  If current trends 

continue, sensor networks will pervade the battlefield.  They include large unmanned 

flying vehicles high in the sky equipped with hundreds of sensors and providing a high 

bandwidth communication backbone; medium sized-tanks autonomously searching for 

lost combatants; small embedded sensors attached to warriors for health monitoring; 

sensors attached to neurologically guided mice; and tiny artificial "dust motes" light 

enough to float in the air sensing for chemicals.  Millions of sensors will cooperate to 

form robust fault-tolerant configurable communication networks, collect data, position 

themselves for good coverage, and answer queries about their locations.  Sensor networks 

-- also referred to as sensor grids, expeditionary sensor grids, sensor fields, expeditionary 

pervasive sensing, and sensor meshes -- will be expeditionary in that they will be readily 

deployable, and ubiquitous.    

Akyildiz [AKY02] describes important concepts of sensor networks, including a 

review of the architecture, algorithms, and protocols for communicating in them.  That 

survey makes distinctions between sensor networks and traditional sensors, and between 

sensor networks and ad hoc networks.  Traditional sensors are described as being larger 

than sensors in a sensor network, and requiring careful, manual positioning and 

communications topology engineering.  The distinction between sensor networks and 

traditional sensors has more to do with the technical limitations than choice of design, so 

this thesis does not make that distinction.  This thesis assumes that any cohesive group of 

sensors will be networked together through wireless communications.  The differences 

between sensor networks and other wireless ad hoc networks [PER00] are: 

 The number of nodes in a sensor network is high.  

 Sensor nodes are densely deployed. 

 Sensor nodes are prone to failures. 

 The topology of a sensor network changes frequently. 

 Sensor nodes mainly use broadcast communications, whereas most ad hoc 

networks use point-to-point communications. 

 Sensor nodes are limited in power, computational capacities, and memory.  

 Sensor nodes may not have a global identification (ID) because of the large 

amount of overhead and large number of sensors. 
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So sensor network deployment and coverage algorithms must account for sensor 

failure and rapidly changing communication topologies, and they must be based on 

minimizing power consumption.  Minimizing power consumption means minimizing 

communications; for mobile sensors, it also includes minimizing movement.   

Sensors can monitor a wide variety of conditions: temperature, pressure, 

humidity, soil makeup, vehicular movement, noise levels, lighting conditions, the 

presence or absence of certain kinds of objects or substances, mechanical stress levels on 

attached objects, and others [EST99].  Their mechanism may be seismic, magnetic, 

thermal, visual, infrared, acoustic, or radar [AKY02].  These mechanisms can be grouped 

into three categories based on how they sense: by a direct line to target (such as visual 

sensors), proximity to target (such as seismic sensors), and propagated like a wave to the 

target, possibly bending (such as acoustic sensors).   

Virtually every challenge encountered with software occurs in sensor-network 

design.  Akilidiz details several sensor-network design factors, including fault tolerance, 

scalability, production costs, operating environment, sensor network topology, hardware 

constraints, transmission media, and power consumption.  While these factors are 

important considerations in this thesis, only fault tolerance and scalability are addressed 

directly.  Akyildiz gives details on communication protocols and the network stack of 

wireless sensor networks, but does not go beyond the scope of tiny immobile sensors. 

That reference mentions various deployment methods (dropping from a plane, delivering 

in an artillery shell, rocket, or missile, etc.), but does not discuss sensor deployment 

issues in detail.  Sensor deployment strategies, coverage, and mobile robotics are not 

discussed at all. 

Although he did not use the term "sensor networks" to refer to the robotic sensors, 

Gage [GAG92] [GAG93] [GAG92a] [DIC02] was one of the earliest researchers building 

mobile sensor systems and has provided many useful ideas.  His approach was “to design 

and implement vehicle behaviors that both (a) can support real-world missions and (b) 

are realizable with current levels of sensor and processing technology, even in the object-

and obstacle- rich environment of ground-based applications, where useful missions 

generally require high-bandwidth visual perception-based vehicle navigation, guidance, 

and control beyond the capabilities of current sensor and processing tools” [GAG92].  He 
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envisioned mobile sensor networks of many small and inexpensive vehicles conducting 

military missions such as minesweeping, mine deployment, surveillance, sentry duty, 

communications relaying, and combat search-and-rescue (CSAR).  

Gage’s concept of a mobile sensor network is a large number of identical 

elements, each possessing  [GAG92]: 

 some mobility;  

 some sensor capability that allows each element to measure, at least crudely, 

its position with respect to at least its neighbors;  

 some mission-capable sensor;  

 optionally, some communications capability; and  

 some processing capability that directs the mobility effectors to maintain a 

specified positional relationship to its neighbors, as measured by its sensors, 

to accomplish the desired mission objectives. 

This thesis will address both non-mobile and mobile sensors and will build on the 

abovementioned work. 

  

B. COVERAGE 

Gage [GAG92a] described three useful coverage behaviors: sweep coverage, area 

coverage, and barrier coverage.  The application created for this thesis is capable of 

implementing all three. 

The objective of sweep coverage is to move a number of elements across a 

coverage area while maximizing the number of detections per time and minimizing the 

number of missed detections per area.  Examples include minesweeping and Combat 

Search and Rescue (CSAR).  [CHO01] discusses coverage path planning for sweep 

coverage, focusing on coverage path-planning algorithms for mobile robots in a plane, 

though the algorithms could be extended to three dimensions.  It surveys both heuristic 

and optimal algorithms.  Gage showed randomized search strategies accomplish sweep 

coverage scenarios well.  Randomized searches can be performed by cheaper robots since 

they do not require localization equipment, robust communications, or advanced 

computational requirements.  Although random search does not guarantee complete 

coverage [CHO01], it is suitable for tactical scenarios where the target is moving.  
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Additionally, optimal sweep coverage algorithms are not guaranteed to detect even non-

mobile targets when the sensors are imperfect.  Thus this thesis uses randomized search 

where sweep coverage is needed.  Lastly, sweep coverage can be accomplished with a 

moving barrier (see barrier coverage below). 

The objective of area coverage [HOW02] is to achieve a static arrangement of 

sensors that maximizes the detection of targets appearing within the coverage area.  

Examples include detecting chemical agent attacks and providing early warning of forest 

fires.  Area coverage is also referred to as blanket coverage, field coverage [GAG92], and 

grid coverage (although this has special meaning) [DHI02].  

The objective of barrier coverage is to achieve a static arrangement of elements 

that minimizes the probability of undetected penetration from one region to another.  

Barrier-coverage experiments in this thesis are modeled to detect Unauthorized Traversal 

(UT) problem described in [CLO02].  This problem considers a target traversing a sensor 

field using some path, and the target is detected if it is recognized at some point on its 

path.  This problem assumes an intelligent target that will then plan to find the path with 

the worst sensor coverage (with lowest probability of detecting a target that traverses it).  

In practice a target will not know where the least covered path will be so its probability of 

detection will be higher than anticipated.   

To understand the difference between area and barrier coverage, consider Figure 

1.  The arrowed line passing through the sensor field indicates a possible target traversal 

path.  When the sensors are deployed for area coverage (left) they cover more area but 

are likely to miss a traversing target.  When the sensors are deployed for barrier coverage 

(right) they are certain to detect a traversing target but would have less chance of 

detecting an area target that may appear anywhere within the sensor field.  This is a 

simplified example in which it is easy to visualize where to place sensors for good 

coverage, but realistic examples are much more difficult.  
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Area Coverage Deployment 

(More Area Covered) 

 
Barrier Coverage Deployment  

(More Likely Traversal Detection) 
  

Figure 1.   Area vs. Barrier Coverage. 

 

C. DEPLOYMENT 

Sensors may be deployed either manually or autonomously.  When deployed 

manually they either are dispersed to random locations, such as when air-dropped or shot 

from artillery, or they are placed at specific locations by robots or humans (often in 

danger).  When deployed autonomously, mobile sensors move themselves to sensing 

locations from an initial arrangement that is easy to realize in a convenient deployment 

scheme.  Possible initial arrangements include (a) from a single source point (e.g., air 

drop in a canister or off the back of a moving delivery vehicle), (b) in a linear pattern of 

appropriate density (e.g., sequential deployment from a moving platform), or (c) in a 

random initial pattern either dense or sparse (e.g., air burst dispersal). 
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III. RELATED WORK 

A. SENSOR NETWORKS 
Sensor networks are being researched and modeled by academic groups, 

government groups, and commercial organizations.  Most work in wireless sensor 

networks is not directly related to coverage and deployment of sensors, as it focuses on 

sensor design, efficient sensor communication, sensor data fusion, and localization 

[AKY02] [DHI02a].  A significant amount of research has also been conducted for 

mobile sensors in the field of robotics; however, most of this work has focused on issues 

such as obstacle avoidance, motion planning, steering, terrain maneuvering, and other 

individual vehicle designs.  There has been a surge of interest lately in multiple robot 

teams working together to accomplish some task or perform some behavior, but usually 

for less open-ended environments than in the missions encountered by the military. 

 

B. THE MATHEMATICS OF COVERAGE 
At the individual sensor level, coverage can be modeled in two ways.  One is to 

consider a circular area around the sensor such that everything within the radius is 

covered, and everything outside the radius is not covered .  The radius is chosen so that 

things to be detected are detected above a threshold.  Unfortunately, the threshold is 

usually arbitrary [STO96].  

This thesis models sensor detection probabilistically.  Although any of the 

probabilistic sensor detection models found in the literature could be inserted into the 

application created for this thesis, the sensor detection model used is from [CLO02].  

Considering a target at location u, emitting signal energy K, the portion of that energy 

that is sensed by a sensor Si at location si is given by 
k

i
i

su
KuS
−

=)(
, where k is a 

constant.  Thus, the energy signal emitted by a target decays with distance [DHI02a].  

Often k=2 to model dispersion in space as with chemicals or sounds deriving from a point 

source (since the area of a sphere is proportional to the square of its radius).  With noise 
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Ni present at the sensor the equation becomes  
ik

i
iii N
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KNuSuE +
−
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where Ei is the energy measured by Si caused by a target at location u plus the noise at the 

sensor.  

[CLO02] also gives a model for fusing the data collected by multiple sensors.  

Sensors can arrive at a consensus either by totaling all measurements and comparing the 

sum to a threshold (value fusion) or by totaling local decisions and comparing the sum to 

a threshold (decision fusion); which is best varies with the situation [CLO01].  This thesis 

uses value fusion, for which the probability of consensus target detection can be written 

as: 
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where η  is the value fusion threshold.  This thesis assumes noise has a Gaussian 

distribution with a mean of zero and a standard deviation of one. 

 

C. SENSOR DEPLOYMENT 

1. Random 

When deploying sensors randomly, a question is how many sensors should be 

deployed in an area to ensure a desired detection level is reached.   If deploying sensors 

incrementally, how many should be deployed each step to minimize cost?  When the 

mission is sweep coverage, randomized search techniques have long been recognized as a 

cheaper than more thorough searches [CHO01].   

With the above formulas one can determine the likelihood of detecting a target at 

any point in the sensor field.  In [CLO02], a two-dimensional grid is laid over the sensor 

field.  Value fusion is used to find the detection likelihood at each point on the grid, and 

this information is used to measure random deployments for barrier coverage.  Their 

measure is termed "exposure" and refers to the detection probability of the path through 

the grid with the lowest likelihood of detection.  The authors develop equations to model 

overall costs associated with cost for deployment, the number of sensors for each 
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deployment, the cost for sensors, and the exposure distribution found through simulation.  

This thesis uses their exposure measure for barrier coverage deployments. 

 
2. Non-Random 
Directed sensor deployment algorithms are useful for smaller sensor fields when 

it is safe for humans to manually place non-mobile sensors or it is possible for mobile 

sensors to communicate between each other, situate themselves, and maintain internal 

maps of the area to be covered.  A wide range of research has addressed it.  

[DHI02] presents simple placement algorithms intended to be fault-tolerant such 

as putting each subsequent sensor at the least covered point on the grid.  Their research 

shows that directed placement algorithms can significantly reduce the number of sensors 

needed compared to random placement.  Their measure of goodness for deployment of 

sensors is the minimum detection level of every grid point, so their deployment 

algorithms address area-coverage missions.  They do not address barrier coverage 

deployments.   

[DHI02a] presents a resource-bounded optimization framework for sensor 

resource management under sufficient coverage of the sensor field.  Much of their work 

is similar to ours from a sensor-modeling standpoint.  They represent the sensor field as a 

grid of points, and model the sensors probabilistically with imprecise detections.  They 

even include obstacles.  Their approach is to evaluate the minimum number of sensor 

nodes required to cover the field.  They also experiment with simple ways to transmit or 

report a minimum amount of sensed data and allow preferential coverage of grid points. 

[CHA01] [CHA02] present a coding theory framework for target location in 

distributed sensor networks.  They provide coding-theoretic bounds on the number of 

sensors needed, and methods for determining their placement in the sensor field using 

integer linear programming.  Although their deployments are strictly for area coverage, 

they have formulated methods for locating a target based on the location of the sensors 

that detected the target.  This does require a densely packed sensor field, and therefore 

many more sensors than necessary for detection only.  Their approach does not appear  

scalable due to its computational complexity.   
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Potential fields have been used to guide robots in a myriad of tasks.  [VAU94], 

for example, uses a potential-field model of flocking behavior to aid the design of flock-



control methods.  Their work showed a mobile robot that gathers a flock of ducks and 

maneuvers them to a specified goal.  This approach could be used to guide sensors to 

even-coverage locations.   

A problem related to coverage and sensor deployment is that of tracking targets 

using a network of communicating robots and/or non-mobile sensors.  A region based 

approach to multi-target tracking [JUN02] controls robot deployment at two levels.  “A 

coarse deployment controller distributes robots across regions using a topological map 

and density estimates, and a target-following controller attempts to maximize the number 

of tracked targets within a region.”  What is similar between this work and ours is a 

comparison of performance and the degree of occlusion in the environment.  Also, they 

reveal that an optimal ratio of robots to stationary sensors may exist for a given 

environment with certain occlusion characteristics. 

In [GUP03], self-organizing algorithms for area coverage are analyzed for their 

effect on reduced energy consumption.  The authors present techniques to reduce 

communications which are different from our quality of coverage metric.  Their work 

deals with selecting sensors that are already placed, whereas our problem deals with the 

optimal placement of sensors.  

The Art Gallery Problem (AGP) studied by numerous researchers considers the 

placement of cameras in an art gallery such that every key point in the room is visible via 

at least one camera [BER00] [MAR96].  Some versions find the minimum number of 

cameras necessary.  This problem is similar to complete area coverage with line-of-sight 

sensors, except that not all sensors are in the visual spectrum.  The rooms are usually 

considered short enough that the cameras’ visual quality does not degrade with distance, 

unlike our probabilistic sensors that have ranges.  The art gallery problem has been 

shown solvable in 2D, but not necessarily in 3D. 

Immunology-derived methods for distributed robotics are shown to be a robust 

control and coordination method in [SIN01].  [MEG00] addresses the problem of finding 

paths of lowest and highest coverage, which is similar to our metric for barrier coverage 

deployments.  This work uses Voronoi (nearest-point) diagrams to demonstrate a 

provably optimal polynomial-time algorithm for coverage.  Other than the use of Voronoi 

to break the environment into discrete segments, their approach for measuring coverage 
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is similar to that used for barrier coverage in this thesis.  They only do random 

deployments, and do not take into account the effects of obstacles, environmental 

conditions, and noise. 

 [HSI03] focuses on area coverage.  The objective is to fill a region with robots 

modeled as primitive finite automata, having only local communication and sensors.  

This work is similar to the other dispersal papers, but reduces jitter and infinite loops.  

Their robots follow the leader out of a door and fill an area.   

The related paper [HES99] proposes a greedy policy to control a swarm of 

autonomous agents in the pursuit of one or several evaders.  Their algorithm is greedy in 

that the pursuers are directed to locations that maximize the probability of finding an 

evader at that particular time instant.  Under their assumptions, their algorithm guarantees 

that an evader is found in finite time.  The sensor robots combine exploration (or map-

learning) and pursuit in a single problem.  While this work does improve upon previous 

research where deterministic pursuit-evasion games on finite graphs have been studied, it 

is limited to problems where the evader’s motion is random and the evader is assumed to 

exist.  If an evader enters the sensor field after the pursuit algorithm has begun, it may 

still evade the pursuers.  Continuously running the pursuit algorithm would result in 

continuous movement of the sensor vehicles which are power-limited.  This type of 

approach is somewhat useful for barrier coverage and sweep coverage, but not very 

useful for area coverage.  There have been similar approaches to this type of pursuit and 

evasion problem, such as [LAV97] and [PAR98], but none of them are particularly 

applicable to our work.  

3. Autonomous 

Autonomous deployment algorithms are useful when communications are limited, 

the number of sensor vehicles is large, and/or the sensor vehicles do not maintain an 

internal representation of the area to be covered.  

[HOW01] [HOW02] [HOW02a] [HOW02b] describe a number of useful 

deployment algorithms for robot teams and sensor networks.  This work is significant 

because it has been applied to real robots and appears to be the only published work that 

demonstrates autonomous sensor deployment.  Most of their work centers on 

incrementally deploying mobile robots into unknown environments, with each robot 
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making use of information gathered by the previous robots.  These deployment schemes 

are global, limited to the area coverage problem, not very scaleable, detection is assumed 

to be perfect, and the robots are limited to line-of-sight contact with each other.  In 

[HOW02], however, Howard and colleagues presented a distributed and scalable solution 

to area coverage using potential fields.  This approach was the first of its kind and was 

repeated as part of this thesis. 

A "virtual force" algorithm is proposed for sensor deployment in [ZOU03].  

Sensors are deployed randomly, and then virtual forces direct the sensors to more 

optimum locations.  For a given number of sensors, this attempts to maximize area 

coverage by using repulsive and attractive forces between sensors.  The effects of 

obstacles are not considered, nor are deployment strategies for barrier coverage.  A 

similar local approach to multi-robot coverage is presented in [BAT02], where the 

assumption is the absence of any a priori global information like an internal map or a 

Global Positioning System (GPS).  This work demonstrated local mutually dispersive 

behaviors between sensor vehicles and resulted in area coverage within 5-7% of the 

theoretical optimal solution.  Obstacles were included in the environment, but barrier 

coverage was not. 

 

D. MOTION PLANNING, EXPLORATION, AND MAP BUILDING 

 Roadmaps are a global approach to motion planning.  They model the 

connectivity of free space as a network called the roadmap.  If the initial and goal points 

do not lie on the roadmaps, short connecting paths are added to join them to the network.  

Roadmaps can be visibility graphs or Voronoi diagrams.  Visibility graphs connect a set 

of predefined nodes that do not intersect objects.  Voronoi diagrams connect nodes with 

edges farthest from obstacles.   

 Cell decomposition is a global approach to motion planning where the 

environment is broken down into discrete subsections called cells.  An undirected graph 

representing adjacency relations between cells is then constructed and searched to find a 

path.   
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 Potential field and landmark-based navigation methods are local approaches to 

motion planning.  With potential fields, the goal generates an attractive force, and 

obstacles generate repulsive forces.  Paths are found by computing the sum of forces on a 

mobile object.  These methods are generally efficient but can have problems such as 

getting stuck oscillating between equipotentials.  Landmark-based navigation is limited to 

environments that contain easily recognizable landmarks.  In [GOR00] the “artificial 

physics” framework from [SPE99] is combined with a global monitoring framework to 

help guide sensor agents to form patterns.  The purpose of the artificial physics is the 

distributed spatial control of large collections of mobile physical agents similar to 

potential fields.  

Exploration and map building in an unknown environment has been studied for a 

long time.  [BAT03] considers a single robot exploring in a changing environment 

without localization.  To ensure complete coverage without using GPS, their robots drop 

off markers (and a lot of them) as signposts to aid exploration.  But it is not currently 

reasonable for battlefield sensor vehicles to drop off thousands of markers as they 

explore.  This may become feasible in the future using smart micro-markers. 

Even if the environment is known, and a path can be planned, robot vehicles may 

still encounter difficulties from unforeseen obstacles.  Not all static solutions extend to 

dynamic environments [KOH00].  Early solutions to dynamic motion planning involved 

using potential fields to help guide the robots [KOR91] [BOR96].  The Vector Field 

Histogram (VFH) approach [BOR90] [ULR00] improves upon these methods, and where 

applicable, its polar histograms and vector fields were used in this thesis.  Another 

interesting solution [STE95] is called the Focused D* algorithm and is a dynamic 

replanning solution to the well-known A* minimum-cost planning algorithm.  

Although better known for his multi-agent abstractions such as Boids, Craig 

Reynolds’s paper on steering behaviors for autonomous characters provides a good 

overview of motion behaviors for simulated vehicles [REY99].  
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IV. SIMULATION DESCRIPTION 

A. PROGRAM DESCRIPTION 

This work developed a Java application to simulate sensor networks.  Its 

environment is a three-dimensional world with rectangles, spheres (sensors), and tank-

like vehicles (sensor vehicles).  The rectangles represent obstructions encountered by 

sensors such as buildings and steep hills.  Sensors can be either stationary or mobile.   

After initializing all components, the program loops.  Each component updates 

itself each time through the loop.  In addition, the user can deploy the sensors by one of 

several algorithms, change the objects that are visible, pause program execution, or put 

the mobile sensors into a different mode.  Figure 2 shows a representative view of the 

program executing.  The simulations can be viewed in a number of different ways 

including dimensions.  Being a Java application, the simulation can run on just about any 

computer platform and across the Internet.   

 
Figure 2.   Two-dimensional view without overlying grid, full application. 
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B. PROGRAM DETAILS 

The system consists of a view layer, a control layer, and a model layer (see Figure 

3).  The view layer is responsible for input and output to the user.  It creates and uses 

controllers.  The control layer manages entities and environments; its controllers run the 

simulations and experiments.  Controllers receive commands from the views and from 

other controllers.  The model layer consists of the individual objects that interact during 

the simulation.  The configuration enables objects to be redefined, inserted, and replaced 

as needed for debugging and development.    
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Figure 3.   Layered software architecture following Model-View-Controller (MVC) 

design pattern. 
 
1.  Views 

Objects in the view layer implement the processes processEvent, makeNode, 

moveNode, rotateNode, colorNode, scaleNode, sendPacket, and receivePacket which 

manage visible entities in the scene.  View objects are the main entry points for the 

application.  The user starts an application/view object that then creates the controllers 

that manage the model.  The view objects may accept user input to change parameters 
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and experiment with the simulations.  When a view creates a controller, it passes it a 

reference to itself so the controller can notify it of changes to the simulation.  Views may 

also pass controllers references to other controllers.   

Figure 4 shows an example two-dimensional view with the overlaid grid.  The 

simulation environment is shown with sensors (green circles), minimal exposure path 

(red circles), grid segments (blue line segments), and grid points (not visible, but existing 

at each grid segment intersection).  Updated coverage measurements are below.  The 

significance of the values on the line segments and the minimal exposure path is 

explained later.  Figure 5 is a perspective view of the three-dimensional representation of 

the environment during a minesweeping scenario showing the obstacles (blue rectangles), 

mines (yellow spheres), one of the tank’s motion sensors (green spheres), and the sensor 

vehicles (blue/red tanks).  All underlying program logic works in three dimensions. 

 Probability of detection = 87% 
 

Figure 4.   Two-dimensional view of example sensor network, with overlying grid. 
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Figure 5.   Three-dimensional view of example sensor network. 
 
 
2.  Sensor Controller 

The sensor controller snetSensorCntrl controls the movement, placement, and 

missions for sensors and other entities.  When running in time-step mode, the view runs 

an update loop that cycles through the entities in the scene.  The sensors read their inputs, 

compute their new state, and act based on their current mission.  Whenever something 

changes, the sensor controller informs the view so it can update the visual scene.  In other 

modes, the view tells the sensor controller which simulation to run, what to do with the 

sensors, and how to receive data from it.  The sensor controller also manages the 

assignment of new missions to sensors.  When the user requests a directed deployment 

algorithm, the sensor controller requests a set of points from the grid controller based on 

the prescribed algorithm.  The sensors are then deployed such as in Figure 6.  The red and 

orange circles show the least covered path for occluded and non-occluded coverage, 

respectively.  The blue objects are sensor vehicles, with one of them displaying the extent 

of its motion sensors as gray circles.     
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Figure 6.   Two-dimensional view of deployed sensor vehicles without obstacles. 

 

3.  Grid Controller 

The grid controller manages the grid that overlays the sensor network, including 

the algorithms for sensor placement and coverage measurement.  The view and the sensor 

controller both use the grid controller.  When the grid controller creates the grid, it 

determines the size of each grid square by dividing the width of the sensor field by the 

granularity, as provided by the user.  If a set of sensors does not exist, the grid controller 

creates them.  Then a directed grid object is created and told to compute coverage based 

on the sensors; the controller finds the least exposed path through the sensor field and 

tells the view to draw it.   

Sensor placement is performed by the snetGridCntrl software object which returns 

a set of points for the sensors.  For random deployment, it finds random points away from 

obstacles and other sensors.  For best-first sensor placement, sensors are deployed one at 

a time; each sensor is put at the point such that the area around it is the least covered 

compared to all the other points.  Best-path is similar to best-first except the only points 

considered are on the minimum-exposure path from the previous sensor placement. 
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For greedy sensor placement, each successive sensor is placed at the point 

evaluated to improve coverage the most at that time.  To compute this, for each point on 

the grid, a temporary sensor is placed there, the coverage for the entire field is measured, 

and the temporary sensor is removed.  The grid point that resulted in the best coverage 

becomes the next point to place a sensor.  Greedy path is similar to greedy except the 

only points considered are on the minimum exposure path from the previous sensor 

placement. 

For genetic-algorithm sensor placement, a population of random sensor 

deployments is generated.  For example, if 10 sensors are being placed, 100 sets of 10 

random deployments are generated.  Until sensor-network performance appears to reach 

an optimum, the following genetic algorithm is followed. 

sort the population by coverage measured 
 
create a new population { 
 
 keep 10 best from the previous generation 
 
 create 90 new sensor deployments as follows { 
   
  choose 2 sensor deployments, favoring high coverage 
 
  create 2 new sensor deployments { 
   
   find a crossover point  
 
   combine 2 chosen by crossing over 
 
   randomly modify sensor positions 
 
   optionally create new random deployment 
   
  } // repeat until 90 new deployments created 

} 
 
score each deployment in new generation 
 
sort new population by coverage 
 

} // repeat until near optimal coverage is achieved 

 

Simulated annealing simulates the cooling of molten metal until the crystal 

structure is created [MIC00].  Although simulated annealing cannot always find a 

globally optimal solution, it has shown success finding solutions to combinatorial-

optimization problems with large search spaces [KIN91] since it is capable of escaping 

locally optimal solutions.  When the algorithm starts, and the “temperature” is high, the 
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search is close to random.  As the temperature cools, it becomes less random, focusing in 

on a global optimum.  Our implementation of simulated annealing is below.  

Tmax = 10; 
Tmin = .001; 
T = Tmax; 
 
currSensors = a random deployment of sensors  
bestCoverage = coverage(currSensors) 
 
while( !haltCondition ) { 
 

currCoverage = coverage(currSensors) 
  

termCount = 100; 
 while( !terminateCondition ) { 
   
  newSensors = a deployment similar to currSensors 
  newCoverage = coverage(newSensors) 
 
  if( currCoverage < newCoverage ) 
   then currSensors = newSensors 
  else if random[0,1) < 1/(1+e(newCoverage-currCoverage)/T) 
   then currSensors = newSensors 
 
  if( termCount-- <= 0 )  

then terminateCondition = true 
 
  if( bestCoverage < currCoverage )  

then bestCoverage = currCoverage 
 } 

 
 T *= 0.93 // other values could be used 
  
 if( (T<=Tmin) or (bestCoverage>=1.0) ) haltCondition = true 
}  

4.  The Network and Graph Controllers 

The network controller works as a rudimentary manager of incoming network 

traffic.  It receives network packets and informs the view what to do visually.  The graph 

controller provides methods for displaying data graphically both for the scene and for 

creating Scalable Vector Graphic (SVG) files (the World Wide Web Consortium (W3C) 

standard for displaying 2D graphics on the Internet using XML).   

5.  Sensor Model 

In most previous research, sensors are modeled as binary (yes or no) sensing 

devices.  The sensors modeled in this thesis are probabilistic.  They represent the 

behavior like infrared, seismic, and ultrasonic sensors where the detection probability 

decreases with distance from an energy-emitting target.  For this work: 
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where Ei is the energy measured by sensor i, Si is the energy at sensor i caused by 

a target at location u, Ni is the noise at sensor i, K is the energy emitted by the target,    

||u-si|| is the distance from the target to sensor i, and k is the decay rate exponent (usually 

2 to 3.5).     

This work uses value fusion for making collaborative determinations by 

combining evidence from multiple sensors.  For value fusion, this work assumes that 

detection probabilities are mutually exclusive and the probability of consensus target 

detection is 
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where η  is the value fusion threshold.  The noise is assumed to be additive white 

Gaussian noise with a mean of zero and a deviation of one for simplicity.  The standard 

normal is then used to estimate the probability. 

6.  Traversal Detection Model for Barrier Coverage 

A grid is created to cover the sensor field.  A directed graph object called Digrid 

represents the points and equal length line segments.  The grid is an abstraction used to 

measure barrier coverage.  Higher-order graphs could be inserted into the application in 

the future.  Each time the coverage metric is needed, the Digrid computes the probability 

for detecting an unauthorized traversal through the sensor field according to the following 

algorithm [CLO02]. 
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 Generate the grid points and line segments over the sensor field 
 
 For each line segment between adjacent grid points { 
    
  Compute value fusion D(u) for each endpoint, u1 & u2 
 
  Assign line segment a weight equal to log(1-D(u1)) + log(1-D(u2)) 
  } 
 
 Add a link from virtual start to each grid point on the west 
 Add a link from virtual end to each grid point on the east 
 
 Assign a weight of 0 to all the line segments from the start and end points 
 
 Compute the least weight path P from start to end using Dijkstra’s algorithm 
 
 Let w equal the total weight of P 
 
 Return P as the least exposure path with an exposure equal to 10-w

 

Notice that in addition to finding the “least covered” path, this returns the 

minimum probability of detecting a traversing target.  This is the barrier coverage metric 

in this thesis.   

7.  Sensor Vehicle Model 

Mobile sensors (sensor vehicles) are displayed visually as tank-shaped objects.  

The speed and direction of each are computed every clock cycle.  The vehicles can rotate 

and travel in any direction.  All the underlying logic is in three dimensions and uses the 

coordinate system shown in Figure 7.   

 
 

Figure 7.   Coordinate system 
 

28 



Figure 8 shows the basic sensor vehicle.  The green circles and line segments 

emanating from the vehicle represent the vehicle’s motion sensors.  The vehicles use the 

motion sensors to build an internal map of the environment.  The mission sensor is for 

target detection.  In our application, if a motion sensor intersects an object, then the value 

returned is between 0 and 1, representing the percentage of max range distance along the 

sensor axis where the intersection takes place.  The robotic vehicles can have any number 

of motion sensors.     

 

Sensor Vehicle

Target/Mine 

(green) 
Sensor 

Feeler Mission 
Sensor

Detect
(red)

(blue)

(green) 

(yellow) 

 
 

Figure 8.   Visualization of sensor vehicle. 
 

 

8.  Implemented Neural Network Model 

The vehicles use input gathered from their sensors to guide their movement.  This 

can be as simple as turning toward a direction and moving.  To support more complex 

movement behavior, each vehicle also has a neural network controller [BUC02].  Figure 

9 shows one node (neuron) of the neural network.  For each node, inputs provide values 

between –1 and 1, which are multiplied by weights, added up, and run through an 

activation function (sigmoidal in this case).  The output from the activation function is 

between –1 and 1.   
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Figure 9.   Basic neuron design for a neural network. 
 

The basic neurons combine to form a neural network, shown in Figure 10.  Inputs 

from the environment enter at the input layer, propagate through any number of hidden 

layers (made up of neurons like Figure 9), and are output from the output layer.  Figure 

10 has five inputs, four nodes in one hidden layer, and two nodes in the output layer.  In 

this thesis, the input nodes receive information from the motion sensors.  For example, 

each motion sensor provides an input between 0 and 1 to represent proximity to an object 

sensed by the motion sensor.  Values closer to 0 are nearer to the vehicle.  Values closer 

to 1 are nearer the end of the motion sensor’s range.  The motion sensors provide an input 

of –1 when the vehicle collides with an object. The outputs control the left and right 

turning forces of the vehicles.  So a –1 on the left output and a +1 on the right output 

would move the left track in reverse at full speed, the right track forward at full speed, 

and cause a left turn of the vehicle.  If the outputs both have +1, the vehicle moves 

straight forward at full speed. 
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Figure 10.   Neural network. 

A vehicle with the neural-network controller gathers input from the environment 

for the input layer.  Each input from the environment is an input to each node of the first 

hidden layer.  Each node of the first hidden layer multiplies each of its inputs by a unique 

weight (between –1 and 1), computes an output, and provides that output to each node of 

the next layer as an input.  This process is repeat for each hidden layer.  After the output 

layer receives inputs from the last hidden layer, values between –1 and 1 are output from 

the neural network and used to controller the vehicles.  Each vehicle has its own neural 

network controller with unique weights.  If all the weights in the neural network are 

random, the vehicles’ behavior does not make sense.  Some vehicles will spin in circles, 

and some will move about sporadically, turning left and right with no reason.  With 

proper weights throughout the neural network, however, the vehicles can be made to 

perform various complex behaviors.   

In order for the outputs to generate the behavior desired, the weights throughout 

the neural network need to be accurately determined.  This is accomplished by mimicking 

the evolutionary process of living organisms.  When a vehicle is created, the neural 

network weights are put in a vector to represent a chromosome.  The simulation is run for 
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some time while the vehicles’ neural network controllers control their movement.  At the 

end of each run, the vehicles are assigned a fitness score that is computed to reflect how 

well they performed the desired behavior.  For example, if the desired behavior is to 

move and detect targets then the score would be higher for those vehicles which detected 

more targets than others.   

In between runs, new neural networks are “born” from the old using a genetic 

algorithm similar to the genetic algorithm described previously, with preference given to 

those vehicles with higher fitness.  Their score at the end of a run is considered their 

fitness within the population of vehicles.  The first generation has a low average fitness as 

the vehicles spin in circles or wander aimlessly for the duration of the first run.  Some 

will do better than others.   

Each new neural network is the offspring of two neural networks from the 

previous generation.  If the above neural network architecture was used, then two parents 

vectors could be as represented in Figure 11.  The incoming weights for each of the six 

nodes are included in a vector.  During execution of the genetic algorithm, two split 

points are randomly selected and the portions of the vectors within the split points are 

crossed over.  Then a few weights are randomly mutated. 
 

N1 
.2 .3 -.1 -.2 .8 .7 -.5 -1 .9 .1 .3 .2 -.3 -.5 .1 .9 -1 -.5 .7 .8 -.2 -.1 .3 .2 .9-1-.5.7

.2 .3 -.1 -.2 .8 .7 -.5 -1 .9 .1 .3 .2 -.3 -.5 .1 .9 -1 -.5 .7 .8 -.2 -.1 .3 .2 .9-1-.5.7

N2 N3 N4 N6 N5 

Parent 1 
Chromosome 

Parent 2 
Chromosome 

 
Figure 11.   Genetic encoding of neural networks. 

 

The neural network can generate a variety of complex behaviors by selecting the 

appropriate fitness function during evolutionary development.  Consider an example of 
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sweep coverage for minesweeping.  Suppose a square area being patrolled by sensor 

vehicles, and mines can randomly appear in the area.  The job of the sensor vehicles is to 

roam around finding mines.  When a mine is found, it is collected and another mine is 

randomly generated.  Initially the weights on all the neurons are random numbers 

between –1 and 1.  The sensor agents are started in the center or at random positions, 

facing random directions.  The two outputs from the neural network control the two 

tracks on the tanklike vehicles.  The vehicles hunt mines for one generation, a certain 

amount of time; sensing their environment, processing their inputs through the neural 

network controller, and adjusting the speed of their tracks.  Fitness is based on how much 

area they cover and how many mines they capture.  Each agent has a 20x20 map covering 

the entire environment, and they get 1 point for each square they visit on their map.  They 

get 20 points for each mine they capture.  In this example, the vehicles evolve so that the 

outputs computed through the neural network cause the vehicles to travel around and 

collect mines. 

At the end of each generation, the agents are sorted according to fitness score and 

“mated” with greater preference given to parents with higher fitness scores.  The vehicles 

that collected the most mines and covered the most area have the higher fitness scores.  

The best few agents are kept unchanged, and new agents are “born” from the old using 

the genetic algorithm.  This process is repeated generation after generation until a 

population exists that can explore a lot of area while looking for mines and avoiding 

buildings.  A generation typically takes about one minute on our test computer (300Mhz, 

64MB random-access memory, with 8MB video random-access memory).   

Figure 12 graphs the evolutionary process after 100 generations for best fitness 

and average fitness.  As can be seen, the minesweeping behavior reaches an optimum 

quickly (approximately 10-20 generations).  The large variation is because each 

generation runs in a different, randomly generated environment.  Some environments are 

easier to minesweep than others. 
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Figure 12.   Fitness progression for evolving neural network. 

 

Minesweeping is one example of evolving neural networks to generate complex 

behavior.  Differences in behavior can be produced by different fitness scoring during 

evolution, not by reprogramming the neural network model [BUC02].  This helps 

facilitate future work by making it easier to generate behaviors.  Little programming is 

necessary, only changing the scoring system.  It would also be possible to make fitness 

selection available to the user, who could for example click on the agents performing the 

desired behavior to favor them in the selection process [LUN01].   

9.  Autonomous Sensor Deployment 

Earlier we described some global algorithms for static sensor placement.  For 

robotic vehicles to use these algorithms, they must know the environment and locations 

of other vehicles.  One vehicle determines where the others will go and tells them.  This 

process reoccurs to adjust to changing conditions and sensor failures.  But when the 

number of sensors is large, readjustment becomes time-consuming and communication 

becomes excessive.   
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The goal of autonomous sensor deployment is to minimize communication and 

power and maximize scalability by having the sensor robots’ motion be based on local 

knowledge.  The idea is that by allowing each robot to make individual local decisions, 

good coverage becomes an emergent behavior of the group.  This is similar to how ants 

perform simple individual behaviors that result in emergent complex behaviors for the 

colony.  The difficulty of this approach is finding the right local behaviors that result in 

the emergent behavior of good coverage for target detection.   

The approach in this work uses potentials and vector fields, common tools for 

robot motion problems.  When the potential force method is used, the forces act upon the 

sensor vehicles to guide their movement.  [ULR00] identified the limitations of using the 

potential field method and presented the Vector Field approach as an improvement using 

real robotic vehicles to demonstrate its effectiveness.  Vector fields also allow us to 

reduce the problem to one dimension.  We use motion sensors to gather local data from 

the environment and determine motion from this vector.  Consider the sensor vehicle in 

Figure 13.  The circles spaced along the motion sensors represent the sampling points for 

“attraction” and “repulsion” forces.  Along each direction, the sensor vehicle stores the 

sum of the forces in a vector.  This vector is then used to make local decisions for motion.  
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Figure 13.   Visualization of sensor vehicle for vector force deployment. 

 

In Figure 13, the sensor vehicle has 8 directions to consider, although we usually 

use 24.  The vehicle agent chooses one of these directions as the desired direction to turn 

towards.  Along each direction, it has evenly spaced sensor points (circles in Figure 13).  

Each of these sensor points is affected by forces that include repulsive and/or attractive 

forces from objects, other sensors, local coverage values, sensor field coverage values, 

etc.  A cumulative force vector represents the weighted sum of the forces on each mobile 

sensor.  The forces on sensor points further away from the vehicle are weighted less than 

those closer to the vehicle.   

Figure 14 shows the force control panel provided by the application that allows 

the user to adjust attractive and repulsive force strengths.  In practice, these values would 

be determined in advance but for simulation purposes, it is convenient to be able to 

modify force parameters to view their effect on the model.  In the figure, SensorForce 
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controls the force applied directly from the direction of the entity causing the force.  

SensorForceX and SensorForceZ allow the user to control the force applied from an 

entity in the x and z directions, respectively.  This is useful because our research shows 

that if both of these forces are positive, good area coverage results.  However, if 

SensorForceX is negative and SensorForceZ is positive good barrier coverage results.  

The effective value of each force is added to the direction vector according to this 

equation:  
( )

k
Force

orceEffectiveF
Distance

= , where Force is the force of the entity the 

force is caused by, Distance is the distance from the entity to the sensor point, and k is a 

coefficient that controls how quickly the effect of the force decays with distance.  A 

positive force is repulsive, causing the vehicle to move away.   

 
Figure 14.   Force panel. 
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One way to travel is to select the direction with the least amount of cumulative 

forces acting upon it and head that way.  The vehicle would move this direction to move 

away from objects and other sensors.  The problem with this is that it causes the vehicles 

to oscillate between directions too much.  One improvement is to chose a threshold and 

only consider directions with force values below the threshold.  Instead of picking the 

lowest valued direction, pick the direction that is closest to the sensor’s current direction.  

Another approach is to add the directions to the left of the sensor’s current direction, add 

the directions to the right of the sensor’s current direction, and turn towards the left or the 

right depending on which sum is lower.  There are many ways to combine the various 

approaches.   

Figures 15 and 16 show the progression as sensors deploy from an initial starting 

position.  The first shows a deployment without obstacles present.  The second shows 

deployment with obstacles.  These autonomous deployments were conducted with equal 

forces being applied in each direction.  This resulted in good area coverage but poor 

barrier coverage.  Later an autonomous deployment using vector forces is shown with 

good barrier coverage (Figure 17). 
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Figure 15.   Autonomous deployment for area coverage without obstacles. 

 

The deployment sequence in Figure 16 resulted from obstacles and other sensors 

causing repulsive forces in all directions.  When the polarity of the force in the x 

direction is inverted, the Figure 17 deployment resulted.  In this case, sensors repel each 

other in the y direction, but attract each other in the x direction, resulting in good spacing 

along a line running north and south.  This has the effect of forming a gauntlet that 

provides good barrier coverage. 
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Figure 16.   Autonomous deployment for area coverage with obstacles. 
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Figure 17.   Autonomous deployment for barrier coverage with obstacles. 
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V. RESULTS 

A. RUNNING THE SIMULATION 
The simulation can be run as a Java application or a Java applet.  Once started, the 

objects and the internal component structures are created.  Based on the parameters 

specified in an XML initialization file, a default scenario starts.  Scenarios run to 

completion or until the user interrupts with input.  Several scenarios can be started by 

clicking on an appropriate button, and others can be loaded from XML scenario files.  In 

most cases, starting a scenario also causes parameters to be loaded from XML files as 

well.  When a scenario provides active 2D or 3D output, the user has several options for 

modifying the view, such as zooming in/out and choosing which objects in the 

environment are visible.  The program consists of over 50 Java classes and several XML 

data files.  The source files occupy approximately 700kB and consist of over 30,000 lines 

of code.  

B. EXPERIMENTS 

1. Random Deployment for Traversal Detection 

For random deployment, we generate random locations in the terrain and assign 

the sensors there. 

a. Probability Density Function of Coverage for a Set Number of 
Sensors 

We estimated the probability of traversal detection as a function of the 

number of sensors by repeated experiments.  Each time the barrier coverage probability 

was calculated and saved.  The saved probabilities are used to compute a probability 

density function.  Figure 18 shows some results for 2, 10, 15, and 20 sensors for occluded 

and unoccluded measurements.  Occluded measurements take the effects of obstacles into 

account, while unoccluded measurements do not.   
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Figure 18.   Probability density function for the distribution of traversal detection coverage 

measured for deployments of 2, 10, 15, and 20 sensors. 

For 2 sensors, the highest density is near zero for unoccluded sensor 

detections and even lower for occluded.  For 10, 15, and 20 sensors, the peak coverages 

get progressively higher, as expected.  This also shows that 20 sensors provide ample 

coverage for traversal detection.   

Now consider Figure 19, which shows the coverage for deployments of 19 

sensors.  Notice how the density fluctuates around 1.2 percent density between 30 and 
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100 percent coverage, varying no more than 1.0 percent.  Later we show the number of 

sensors causing an even spread of density values to be the number of sensors that results 

in minimum cost when deploying in steps. 

 
Figure 19.   Probability density function for 19 sensors. 

 

b. Confidence Level for Variable Number of Sensors  

Obtaining the probability of reaching a specified level of coverage, or the 

confidence level, is accomplished by randomly deploying sensors repeatedly and 

computing the percent of time the deployment achieves the specified level.  Figure 20 
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shows a graph of the confidence level reaching 80% coverage for 0 to 60 sensors.  The 

confidence level increases with the number of sensors deployed.  

 
 

Figure 20.   Probability that coverage is above 80% for varying number of sensors. 
 

c. Cost to Achieve Coverage 

When deploying sensors randomly, such as when dropping from aircraft 

or launching from artillery, the question is how many to deploy.  A simulation can deploy 

a set of sensors and measure the coverage.  If the desired level of coverage is not reached, 

deploy another set until the desired level of coverage is reached.  Obviously, if there are 

more sensors available than is necessary to completely cover the sensor field, deploying 
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all sensors at once would be wasteful.  If there are 1,000 sensors and only 100 are 

required, then less than 1,000 should be deployed.  We could deploy sensors one at a 

time, which would minimize the number of sensors deployed; however, if each 

deployment includes a fixed cost, this would be expensive.   

To find the optimum number of sensors to deploy at a time we first assign 

a cost to deploy a set of sensors (Cd) and a cost to each sensor (Cs).  Figures 21 through 

24 are graphs of how much it costs to deploy a set of sensors at a time to achieve the 

specified coverage.   

 
Figure 21.   Cost of achieving 80% coverage as a function of the number of sensors with 

Cd = 0 and Cs = 1. 
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Figure 22.   Cost of achieving 80% coverage as a function of the number of sensors with 

Cd = 5 and Cs = 1. 
 

 
 

Figure 23.   Cost of achieving 80% coverage as a function of the number of sensors with 
Cd = 10 and Cs = 1. 
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Figure 24.   Cost of achieving 80% coverage as a function of the number of sensors with 
Cd = 100 and Cs = 1. 

 

The first figure shows that if deployment is free then it is most cost-

effective to deploy one sensor at a time until achieving the desired coverage.  The last 

shows that if deploying costs 100 times as much as each sensor then it is better to deploy 

many sensors each step.  The other figures show that deploying approximately 23 sensors 

each step minimizes cost.  Cost is achieved at nearly the same number of sensors for 

occluded and unoccluded sensor measurements so finding the minimum for one should 

be sufficient in practice. 

Note that the local minimums of 23 for cost correspond to Figure 19, 

where coverage fluctuates between 30 and 100 percent with 19 sensors.  [CLO02] 
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developed an analytical explanation for the correspondence between the local minimum 

and the number of sensors with a flat probability density.  They used the following 

equation to describe the expected cost 
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where n is the number of sensors deployed each step for a total of S steps, and 1-Fn(v) is 

the confidence of obtaining coverage of amount v with n sensors.  As described in 

[CLO02], when the probability density varies widely the weight associated with the first 

term of the sum increases rapidly while the weights associated with the higher number of 

sensors decrease.  The cost increases again after this local minimum as the increase in n 

compensates for the decrease in weights.   

 

2. Deployment Algorithm Performance Comparison 

Figure 25 compares barrier coverage for each of the placement algorithms in a 

400m2 sensor field.  Occluded means that objects in the environment block the energy 

from target to sensor.  Measurements were obtained for area coverage and barrier 

coverage, occluded and not occluded, for each of the deployment algorithms described in 

the previous chapter.   

The graphs in Figure 25 show the coverage differences between algorithms when 

obstacles present barriers to traversal but not to sensing.  Our analysis shows that the 

Greedy algorithm is the worst coverage algorithm; however, our GreedyPath algorithm 

performed well.  Note Random placement performed fairly well, which is significant 

because it will usually be cheap to deploy randomly.   

Autonomous deployment performed well for unoccluded (Figure 25) and 

occluded (Figure 26) measurements.  The sensor vehicles were able to deploy using only 

local information and no central planning.  For scenarios where many sensors have no 

internal map of the environment, limited communication capabilities, and limited power, 

this will be essential.   
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Figure 25.   Deployment algorithm comparison, not occluded. 

When the effect of obstacles is taken into account, the graphs in Figure 26 show 

the choice of algorithm can have a significant effect on coverage.  Greedy again performs 

the worst.  The Genetic and Simulated Annealing algorithms perform the best by far, 

achieving 100% barrier coverage with far fewer sensors than the other algorithms.  Figure 

27 gives a time comparison of the algorithms.  GreedyPath performed quite well 

considering it is also one of the fastest of the algorithms.  Random did not perform as 

well, but did perform adequately considering it is the fastest.  Best1st and Greedy are the 

slowest.  Genetic and Simulated Annealing are the slowest with few sensors, but with 

more sensors find optimal solutions quickly.   
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Figure 26.   Deployment algorithm comparison, occluded. 

 
Figure 27.   Deployment algorithm time comparison. 
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VI. FUTURE WORK 

A. FUTURE WORK  

This work developed a simulation environment to enable varied testing of 

coverage and deployment issues in a wide variety of sensor networks.  Many types of 

sensors exist and with different characteristics (mobility, power, sensing ability, etc.).  

The energy measured by the sensors varies.  Sensors exist that detect sound, light, 

movement, vibration, radiation, chemical substances, and so on.  The environment may 

have varying occlusion characteristics as well as areas where the desire to detect a target 

is higher.  Different coverage measurement schemes, different data fusion schemes, and 

different deployment algorithms will need to be tested.  The number of possible 

combinations that are testable with the program implemented for this thesis is large. 

As for future work, the directed grid used to measure barrier coverage can have 

different levels of granularity.  With higher granularity, there are more grid squares and 

the coverage metric should be more accurate.  Future work should examine the effect of 

granularity on accuracy and time.  [MEG00] describes the use of Voronoi diagrams for 

computing coverage similar to our use of directed grids.  Future work could compare and 

contrast Voronoi diagrams with directed grids.    

In [PRO00] the authors present a vigilance model which allows birds to control 

the area a flock occupies as well as their vigilance rate.  An optimal strategy is found for 

the birds under a variety of conditions.  Performing the two contradictory tasks presented, 

feeding and avoiding becoming food, is analogous to two sensor tasks, sensing 

phenomena and conserving energy.  Future work could examine the models presented in 

[PRO00] and extend the theories to optimize the tradeoff between frequent sensing and 

power conservation, for example.    

This thesis describes a vector-force algorithm that accomplishes autonomous 

deployments for area and barrier coverage.  An evolutionary strategy is described for 

autonomous sweep coverage.  Future work could develop an evolutionary strategy for 

autonomous deployment of sensor vehicles.  Furthermore, the autonomous barrier 

coverage algorithm could be extended to move in a particular direction, thereby 

accomplishing sweep coverage. 
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Future enhancements can be made to the size and scope of the environment.  For 

simplicity, this thesis focused on a limited number of homogenous sensors in a fixed area.  

The application supports testing for heterogeneous sensors, as well as different sensing 

models.  Also, the area to be covered does not need to remain static.  Sensors covering 

the flank side of a mobile force would need to move with the force and continuously 

update their positions.   

The size of the environment and the number of entities can be increased in a few 

ways.  One approach would be to have a larger sensor field aggregate the information of 

several smaller sensor fields for coverage and deployment.  However, a limiting factor is 

that all the sensors run on one machine unlike in the independence of the real world.  

Future work could simulate separate computational entities and network communication, 

which should enable the size to increase greatly. 

 

B. CONCLUSIONS 

This thesis has explored coverage and deployment issues for mobile and non-

mobile sensors.  A simulation of a multi-agent expeditionary sensor network was created 

to formulate and test search, coverage, and deployment algorithms.  In the course of this 

research we evaluated cost and performance of deploying multiple homogenous sensors 

with a wide variety of constraints.  The comparison of several deployment algorithms 

showed significant insights, and novel autonomous deployment schemes were presented.  

The application and algorithms developed enable future modeling and simulation efforts. 

While the components implemented in this thesis do not target any existing 

framework, the concepts are applicable to a wide range of sensor coverage and 

deployment problems.  Many possible scenarios can be built, tested, and compared.  This 

allows for extensive simulation of varied platforms to guide future acquisition and 

minimize cost.  The design of the application allows for future extensibility with minimal 

modification to existing code.  The algorithms described can be implemented in any 

programming language or sensor network. 
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APPENDIX A – APPLICATION DISTRIBUTION AND SOURCE 
CODE ACCESS 

All application source code, examples, and binary distribution are available at the 

NPS SAVAGE archive or by request to: 

Dr. Neil Rowe:  ncrowe@nps.navy.mil. 
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